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Population differentiation depends on extrinsic factors such as geographical distance, eco-
logical barriers, and different ecotypic regions (Endler, 1977; Pounds and Jackson, 1981;
Bossart and Prowell, 1998; Brieva and Formas, 2001) that promote genetic divergence. In
some lizards, genetic differentiation occurs after long periods of isolation, when the gene
flow is low, the population size is reduced, habitats are restricted, and vagility is low (Bezy
and Sites, 1987; Sarre et al., 1990).

Lizard species of the genus Liolaemus are widely distributed in the central-southern
region of Chile (Donoso-Barros, 1966; Nuñez and Jaksic, 1992). Of these, Liolaemus
tenuis (Duméril and Bibron, 1837) has one of the largest ranges. This arboreal species
inhabits the distinct bioclimatical regions found in the area between Coquimbo (29◦58′S,
71◦21′W) and Los Lagos (39◦51′S, 72◦50′W), from sea level up to 1800 m (Donoso-
Barros, 1966; Di Castri, 1968).

Two subspecies (L.t. tenuis and L.t. punctatissimus) have been described within this
species, differentiated fundamentally by their dorsal coloration patterns (Müller and
Hellmich, 1933). These subspecies were originally described based on samples from two
geographically distant localities [L.t. tenuis (Santiago; 33◦27′S, 70◦40′W) and L.t. punc-
tatissimus (Lota; 37◦04′S, 73◦10′W)]. However, the colour pattern in both subspecies
shows a clinal variation within one species (Vidal, 2002). Furthermore, the distributional
ranges of these species are superimposed (from 37◦ to 40◦) (Núñez and Jaksic, 1992),
which is contradictory to the concept of subspecies (Mayr and Ashlock, 1991). This infor-
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mation suggests these proposed subspecies do not correspond to real taxonomical entities,
but rather are phenotypic variations within the species.

Considering that most of the observable colour and morphology variations in natural
populations do not respond to a genetic basis, and because this is a recurrent problem
in taxonomic descriptions of highly variable species (i.e. L. tenuis) we used allozyme
electrophoresis to examine the genetic structure of the L. tenuis populations and established
the degree of genetic differentiation among the two proposed subspecies.

Two hundred thirty-three lizards were collected manually from 12 localities along
the north-south axis of Chile (fig. 1); L.t. tenuis inhabited six of the localities and
L.t. punctatissimus the other six. The localities and the number of specimens examined
were as follows: L.t. tenuis: Salamanca (n = 9), Aconcagua (n = 12), Quilpué (n = 21),
Río Clarillo (n = 38), Licantén (n = 50), Curicó (n = 30); L.t. punctatissimus: Cañete
(n = 21), Nacimiento (n = 10), Victoria (n = 11), Curacautín (n = 14), Lautaro (n = 9),
and Puesco (n = 8) (Appendix I).

The lizards were anaesthetised with Chloroform and kept at −80◦C until processed.
Eviscerated specimens were homogenised with distilled water. The homogenates from
each specimen were analysed by horizontal starch gel (12.5%) electrophoresis, using the
Hillis and Moritz (1990) staining procedures. The proteins assayed in the tissue extracts
were: phosphoglucomutase (Pgm-1, Pgm-2; Enzyme commission [EC] 5.4.2.2); esterase
(Est-1, Est-2; EC 3.1.1); tetrazolium oxidase (To-1; EC 1.15.1.1); isocitrate dehydrogenase
(Idh-1; EC 1.1.1.42); malic enzyme (Me-1; EC 1.1.1.40); glucosephosphate isomerase
(Gpi-1; EC 5.3.1.9); aspartate transaminase (Ata-1; EC 2.6.1.1); general proteins (Gp-
1; Gp-2); leucine amino peptidase (Lap-1; EC 3.4.11.1); malate dehydrogenase (Mdh-1;
EC 1.1.1.37); L — lactate dehydrogenase (Ldh-1; EC 1.1.1.27); sorbitol dehydrogenase
(Sdh-1; EC 1.1.1.14); and glycerol-3-phosphate dehydrogenase (G3pdh-1; EC 1.1.1.8).
The alleles at each locus were named alphabetically according to the order of their relative
electrophoretic mobility (Bezy and Sites, 1987).

Measures of genetic variability and genetic distances (Rogers, 1972) were computed us-
ing BIOSYS 2 (Swofford and Selander, 1981). A non-parametric test (Spearman) was used
to test correlations between the observed heterozygosity, percentage of polymorphism,
number of alleles per locus, and sample size (Sokal and Rohlf, 1995). Deviations from
Hardy-Weinberg equilibrium, the excess and deficit of heterozygotes, and the genetic ho-
mogeneity between populations were tested by Fisher’s Exact Test, setting 1,000 iterations
per 100 batches in the Markov chain method, with GENEPOP software (Raymond and
Rousset, 1997).

Interlocalities genetic variation, using Rogers’ genetic distance, was examined through
multidimensional scaling (MDS; Lessa, 1990), using STATISTICA 5.1 (StatSoft; Tulsa,
Okla). The isolation by distance model (Wright, 1943) was analysed from the regression of
Fst/(1 − Fst) estimates for pairs of populations on the logarithm of the geographic distance
for populations (Rousset, 1997). The GENEPOP software (ISOLDE option) (Raymond and
Rousset, 1997) was used to test the hypothesis of isolation by distance. The Fst statistic was
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Figure 1. Geographic range (Donoso-Barros, 1966) for L.t. tenuis ( ) and L.t. punctatissimus ( )
subspecies, and sampling localities of Liolaemus tenuis populations used in this study.
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calculated according to Weir and Cockerham (1984) and the gene flow (Nm) values were
estimated according to Slatkin (1985).

A total of 16 presumptive loci were resolved: three were polymorphic (Pgm-2; Est-2;
To-1), 13 were monomorphic (Est-1, Idh-1, Pgm-1, Me-1, Gpi-1, Ata-1, Gp-1, Gp-2, Lap-
1, Mdh-1, Ldh-1, Sdh-1, G3pdh-1 (table 1). The average number of alleles per locus was
1.21. The mean of polymorphic loci was 16.3%, ranging from 12.5% (five localities) to
18.8% (seven localities) (table 1). These values are within the ranges reported by Gorman
and Renzi (1979), Bezy and Sites (1987), Sarre et al. (1990), and Martins (1995) for other
reptile families.

No significant relationships were found between the sample size and the observed
mean heterozygosity (rs = 0.309; P = 0.327) and the percentage of polymorphic loci
(rs = 0.515; P = 0.086), but the correlation between sample size and mean number
of alleles per locus was significant (rs = 0.802; P = 0.001). However, the ranges
of average number of alleles per locus varied little among all the populations studied
(1.13-1.38). The observed and expected mean heterozygosities for the localities were
0.066 and 0.059, respectively, and showed no significant differences (Wilcoxon Z value
= 1.176; P = 0.239). Fisher’s Exact Test revealed a deficit of heterozygotes for Pgm-
2 in two localities, for Est-2 in one locality, and for To-1 in two localities. An excess of
heterozygotes was found in one locality for Pgm-2 and in one locality for Est-2.

No diagnostic loci between subspecies were observed (table 1). The genetic distance
(D) between localities ranged from 0.009 to 0.064, which is in the same range as the
hypothetical subspecies (L.t. tenuis, mean D = 0.026; L.t. punctatissimus, mean D =
0.038). In reptiles and amphibians, values of D = 0.10 suggest population similarity
within one species (Kalezic and Hedgecock, 1979; Bezy and Sites, 1987; Jacobs, 1987;
Sarre et al., 1990). Rogers’ distance between subspecies was D = 0.012, suggesting a
low level of genetic differentiation; furthermore, this value is lower than the mean genetic
distance among localities within each subspecies. Therefore, these results suggest that the
subspecies are populations within the L. tenuis species.

In the twelve localities analysed, the average value of Fst across all loci was 0.083 and
the statistical analysis showed that this value was significantly different from zero (P <

0.001), indicating the existence of subdivisions among populations. However, this Fst value
is considered low for reptiles (Sarre et al., 1990). The respective gene flow (Nm) is 2.76
individuals per generation, suggesting an important genetic exchange among populations
(e.g. Formas and Brieva, 2000). A non-hierarchical positional analysis (multidimensional
scaling) showed no consistent ordering of the localities according to subspecies (fig. 2).
However, the northern localities tended to be in close positions. In contrast, southern
localities are dispersed in the multidimensional space. In fact, this analysis revealed higher
differences among the southern localities (e.g. Victoria, Curacautin, Lautaro, and Puesco)
than between the northern and southern localities, since two of the southern localities
were closer with the northern ones. This probably explains the lack of correlation found
between isolation and genetic and geographic distance (Pr = 0.860) when using distance
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Figure 2. Bi-dimensional ordination of the twelve localities of Liolaemus tenuis using the/a multidimensional
scaling method. Closed circles = L.t. tenuis, open circles = L.t. punctatissimus.

analysis. The lack of significant correlations between these variables suggests that the
populations could have recently recolonised these areas from glacial refuges (Villagrán et
al., 1995). The greater genetic variation between southern localities (as opposed to between
southern and northern ones) could have arisen from stochastic events due to the isolation
of small populations in the southern range during the last glaciations. The forest habitat
of L. tenuis in south central Chile has been altered by both glaciations (Heusser, 1981;
van Geel et al., 2000) and floral change during different periods (Villagrán and Hinojosa,
1997). In fact, at least four southern L. tenuis localities (Victoria, Curacautín, Lautaro,
and Puesco) fall within the geographic limits of the most recent glaciation (Formas and
Brieva, 2000). The colour patterns of the two proposed subspecies are not concordant with
the geographical arrangement of genetic variation between populations obtained from this
study. Although L. tenuis shows a clinal variation of colour patterns (greenish accents
in southern populations and a high proportion of brownish scales in the northern ones),
there is a higher variation of colour patterns, including colour designs, within southern
populations than between the two proposed subspecies (Vidal, 2002). This suggests that the
colour variation is a polymorphism of different populations with a clinal trend, but where
the coloration types don’t show a geographical arrangement consistent with the previously
defined subspecies.
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Appendix 1

List of Liolaemus tenuis individuals used in this study and their geographic coordinates. Specimens are deposited
in the Museum of Zoology of the University of Concepción (MZUC), the Laboratory of Cytogenetics, Faculty of
Science, University of Chile (LN), and the Museum of Natural History of Concepción (CHMHNC).

Salamanca (31◦47′S, 71◦58′W): MZUC27121-129; Aconcagua (32◦55′S, 71◦32′W): LN2293-2298, LN2302-
2304, LN2427, LN2429-2430; Quilpué (33◦02′S, 71◦27′W): MZUC27130-136, MZUC27091, MZUC27109-
120; Río Clarillo (33◦39′S, 70◦38′W): LN2657-2658, LN2669-2670, LN2306-2307, MZUC27093-099, LN1651-
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